5

N

AD A 0 9677

AMMRC TR 81-8

AD

EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAMIC COMPOSITE RADOME MATERIALS

FREDERICK P. MEYER, ROBERT FITZPATRICK, and RUSSELL E. WHITCHER

February 1981

Approved for public release; distribution unlimited.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

81 3 23 076

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

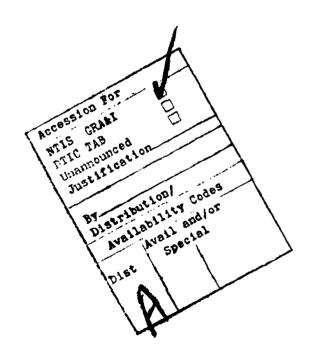
DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Do not return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
	3. PECIPIENT'S CATALOG NUMBER			
AMMRC-TR-81-8 AD-A096775	S. TYPE OF REPORT & PERIOD COVERED			
EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAMIC COMPOSITE RADOME MATERIALS.	Final Report			
7. AUTHOR(o)	B. CONTRACT OR GRANT NUMBER(e)			
Frederick P./Meyer Robert Fitzpatrick and Russell E./Whitcher*	(u)			
S. PROPONEING ORGANIZATION NAME AND ADDRESS	10. PROGRAM EL MENT PROJECT, TASK			
Army Materials and Mechanics Research Center	D/A Project: 1L1621Ø5AH84			
	AMCMS Code: 612105.H840011 Agency Accession: DA OG4702			
11. CONTROLLING OFFICE NAME AND ADDRESS	TO SEPORT DATE			
U. S. Army Materiel Development and Readiness Command, Alexandria, Virginia 22333	February 1981			
	10			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)			
(12)/16	Unclassified 15. DECLASSIFICATION DOWNGRADING			
	SCHEOULE SCHEOULG			
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)				
*Materials Research Laboratories, Melbourne, Vi	ctoria Australia			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
Fused silica				
High-energy lasers Ceramic composites				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
and the Committee of the same of the same and the same same same same same same same sam				
(SEE REVERSE SIDE)				


Block No. 20

ABSTRACT

Recently developed ceramic composite materials have been subjected to various CW high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-silicate and alumina fibers to slip-cast fused silica (SCFS) resulted in a moderate increase in flexural strength and elastic modulus but had no effect on the ablation rate. Under CW laser irradiation at 10.6 μm and an intensity of 2 kW/cm², the fiber-reinforced fused silica samples failed by meltthrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers completely dissolved.

Ablation rates of these composite materials were independent of fiber type and amount up to $8~kW/cm^2$ and were density-dependent above $8~kW/cm^2$. The ablation rate of unreinforced fused silica was found to be equal to 0.5~mm/sec at $2~kW/cm^2$ with or without a Mach 0.8~air flow across the sample.

The addition of ceramic fibers to SCFS did not degrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, its penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

1. INTRODUCTION

A number of ceramic fiber-reinforced fused silica materials are being evaluated as an improved radome material with better rain erosion resistance to replace slip-cast fused silica (SCFS). Samples were prepared of slip-cast fused silica reinforced with three different ceramic fibers at several different levels of fiber content and exposed to laser irradiation. Unreinforced SCFS samples were also tested for a baseline curve. Thermal damage, either meltthrough time or ablation rate, was assessed as a function of sample composition and processing history.

2. EXPERIMENTAL PROCEDURE

Recent work by Meyer¹ has shown that adding small amounts of various ceramic fibers to SCFS yields a moderate increase in the flexural strength and elastic modulus over that for nominal SCFS. Additional samples were prepared for this program to evaluate the effects of laser irradiation on the reinforced SCFS. Three types of ceramic fibers were used: an alumina fiber, density 2.80 g/cc; an aluminosilicate fiber, density 2.56 g/cc; and a high-purity fused silica fiber, density 2.20 g/cc. The fibers were chopped in a one-gallon capacity blender until the L/d ratio was from 20 to 200. The chopped fibers were then dried and weighed and added to diluted fused silica slip in the appropriate amounts. Flat tiles, 15 cm by 15 cm, were slip cast on molds of US #1 Pottery plaster. As-cast thicknesses were from 1 to 2 cm. The samples were removed from the molds, dried at 90°C for 24 hours, and fired at 1225°C for 200 minutes.

Two separate types of laser test samples were prepared from the slip-cast tiles. For the meltthrough experiments the flat tiles were machined to a constant thickness to within 0.002 inch. For the ablation rate experiments small bars were machined to 3 mm by 3 mm by 75 mm long. Bulk densities of all samples were obtained using Archimedes' Principle. Flexural strengths were determined on an Instron Universal Testing Machine, Model #1115, using 4-point loading at a loading rate of 0.002 inch/minute. Modulus of elasticity data was obtained by measurement of the ultrasonic velocity in each material. A brief summary of these properties for all materials tested is shown in Table 1.

2.1 PENETRATION EXPERIMENTS

The time to melt through a sample of known thickness was measured and converted to a penetration rate. The laser used was continuous wave (CW) 2-kW $\rm CO_2$ welding laser emitting radiation at 10.6 μm . The beam was gaussian in cross section with two distinct major peaks. The time for burnthrough was measured by a timer which started when the laser beam burned through a thin metal strip in front of the sample and stopped when the beam burned through a similar metal strip behind the sample. There was no air movement across the face of the samples during the experiments.

2.2 ABLATION RATE EXPERIMENTS

Samples were submitted for determination of the one-dimensional rate of ablation utilizing a 30-kW CO₂ mixing laser. The apparatus for measuring the ablation rates

^{1.} MEYER, F. P. Effects of Various Fiber Additions on the Properties of Slip-Cast Fused Silica. Proceedings of the 15th Symposium on Electromagnetic Windows, Georgia Institute of Technology, Atlanta, Georgia, June 1980.

McCLEARY, R. C., WHITCHER, R. E., and BECKWITH, P. J. A 30-kW CO₂ Mixing Laser. MRL-R-751, AR-001-830, Materials Research Laboratories, Melbourne, Victoria, Australia, July 1979.

is shown schematically in Figure 1. Samples of fiber-reinforced SCFS were exposed to a series of laser power densities and their rate of ablation determined. The laser beam was passed through a beam integrator that produced a very good top hat cross section. At power densities of from 2 to 8 kW/cm the beam was 6.25 mm by 6.25 mm, and at 10 to 18 kW/cm the beam was approximately 4.50 mm by 4.50 mm. A wind tunnel was positioned so that an air flow of up to Mach 0.8 could be directed across the front face of the sample during testing.

Table 1. PROPERTIES AND LASER DAMAGE IN FIBER-REINFORCED SCFS COMPOSITE MATERIALS

Sample Composition	Bulk Density (g/cc)	Flexural Strength (psi)		Penetration Rate (mm/sec)	Ablation Rate (mm/sec)
Slip-Cast Fused Silica	2.01	3490	4.40.106	1.69	0.55
Fused Silica Fibers - 1 v/o	2.02	5200	3.73	1.58	0.55
5 v/o	2.02	7560	6.60	1.89	0.59
15 v/o	2.03	5310	4.59	1.89	0.80*
25 v/o	1.77	2670		2.66	0.73
Alumino-Silicate Fibers - 1 v/c	1.92	5330	4.33		0.73
5 v/c	1.94	6230	5.39	1.89	1.00
Alumina Fibers - 1 v/o	1.90	4430	3.73		0.62
5 v/o	1.68	1735			0.92
10 v/o	1.78			2.00	
15 v/o	1.42	680			1.56

Note: All penetration rate and ablation rate data at 2 kV/cm laser power. All ablation tests done with Mach 0.8 air flow.

^{*}Ablation rate sample density 1.94 g/cc.

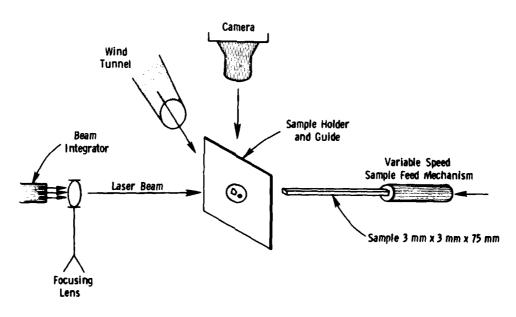


Figure 1. Apparatus for ablation rate measurement on the 30-kW laser facility.

3. RESULTS AND DISCUSSION

A typical microstructure for the fiber-reinforced slip-cast fused silica materials is shown in Figure 2.

3.1 PENETRATION EXPERIMENTS

After exposure to the 2 kW/cm² laser beam, all the fiber-reinforced SCFS samples failed by meltthrough. A clean hole defined by the beam was made in each sample. Because of the gaussian cross section of the laser beam, a conical-shaped hole (referred to as the damage cone) was always produced. Several samples were sliced through the damage cone and photomicrographs were taken in and near the damaged areas. Figure 3 shows the area adjacent to the damage cone in a 10 v/o alumina fiber composite. The right-hand side of Figure 3a shows the glassy surface produced when the composite material melted. Figure 3d clearly indicates that the material has melted to form a clear glassy phase with no porosity. No fibers are visible in this region as they have melted also. A transition area exists around the damage cone in which the energy from the laser beam has begun to affect the microstructure of the material. Figure 3c depicts this area in which fibers have begun to dissolve and large pores have begun to form. Closer examination of a similar transition area in a fused silica fiber-reinforced SCFS, Figure 4, reveals that the fibers are beginning to dissolve into the matrix and lose their fiber identity.

Penetration rate for each sample tested at 2 kW/cm² is given in Table 1. In general, the penetration rates are higher for the lower density materials. Of particular interest are the fused silica fiber-reinforced SCFS composites. The addition of up to 15 v/o fused silica fibers increased the penetration rate by only 12%. Due to the experimental setup, it was difficult to obtain an exact time for penetration.

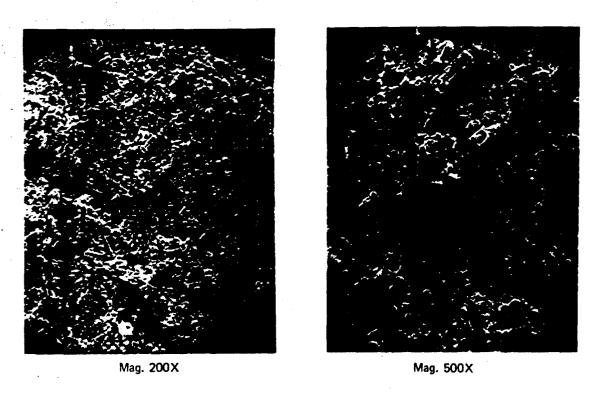


Figure 2. Fused silica fiber-reinforced fused silica - fiber content 25 v/o, fiber diameter 10 µm.

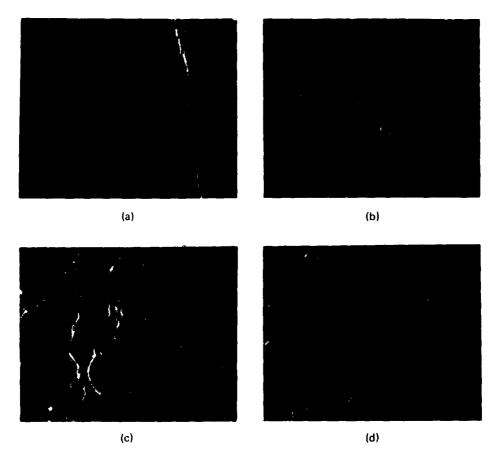


Figure 3. Effects of CW high intensity laser irradiation on 10 v/o alumina fiber-reinforced SCFS.

- a. Cross-sectional view, damage cone on right, Mag. 50X
- b. Unaffected area, Mag. 500X
- c. Transitional area, Mag. 1000X
- d. Glassy area in damage cone, Mag. 1000X

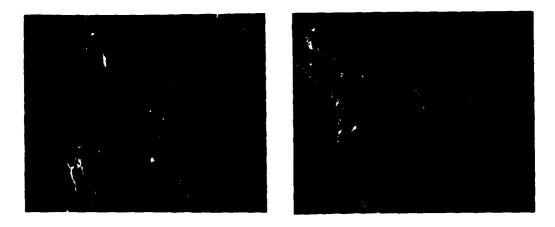


Figure 4. Effects of CW high intensity laser irradiation on fused silica fiber-reinforced SCFS. Mag. 2000X

Because of the gaussian beam profile only a very small pinhole was produced when the beam first burned through the sample. If the metal timing strip was offset slightly, the laser beam would miss it at the exact time of penetration and an additional fraction of a second would be needed before the beam was large enough to irradiate the metal strip. The 12% increase in penetration rate can therefore be considered as within experimental error. An increase in penetration rate of 57% seen in the sample containing 25 v/o fused silica fibers is definitely attributed to the lower density of this material.

3.2 ABLATION RATE EXPERIMENTS

All the ablation rate data reported herein utilized a Mach 0.8 air flow across the face of the sample during testing. Figure 5 shows the ablation rate as a function of power density level for the fused silica fiber-reinforced SCFS samples. Up to a power density level of approximately 8 kW/cm² there is little difference in the

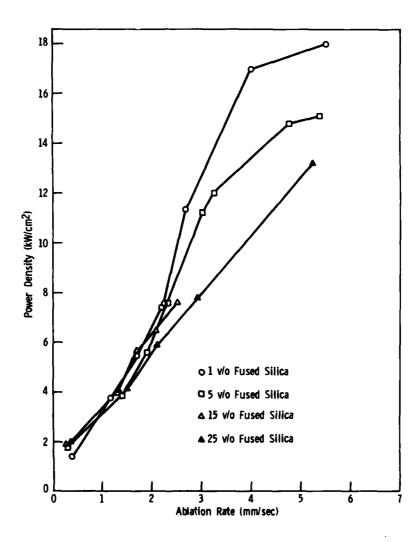


Figure 5. Ablation rate versus power density as Mach 0.8 for fused silica fiber-reinforced fused silica composites.

ablation rates of these composites. Even the low density sample containing 25 v/o fibers did not have a significantly higher ablation rate than the other more dense composites. At higher power density levels the samples were completely overmatched by the laser beam. Ablation, particularly at Mach 0.8, is difficult to measure and the spread in the data for samples containing 1 v/o and 5 v/o fibers, both having very similar densities, must be caused by the accuracy of the experiment. These samples, however, did have higher ablation rates than the lower density sample containing 25 v/o fibers.

Figure 6 shows the ablation rates versus power density level for three SCFS composite materials each containing 5 v/o of a different fiber. Theory would predict that the more refractory alumina and alumino-silicate fiber composites would have lower ablation rates than fused silica fiber composites at a given power density. This is not the case, however, as the data shows just the opposite to be true. The differences in ablation rates are attributed to the differences in densities of the samples and not to the type of fiber that has been added. This fact is further illustrated in Figure 7 where three samples of different composition yet very similar density level are shown to have almost identical ablation rates.

Figure 8 shows the ablation rate as a function of power density level for SCFS at Mach 0.8. The material had a density of 2.01 g/cc. The data shown here agrees quite nicely with a similar curve presented by Viechnicki et al.

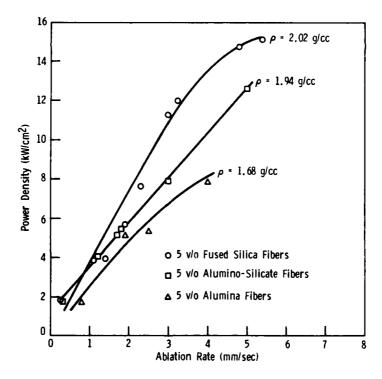


Figure 6. Ablation rate versus power density at Mach 0.8 for fused silica composites reinforced with 5 v/o ceramic fibers.

3. VIECHNICKI, D. J., MEYER, F. P., and PETSCHKE, C. Response of Fused Silica and Silicon Nitride to HEL Irradiation.

Army Materials and Mechanics Research Center, AMMRC TR 78-31, July 1978.

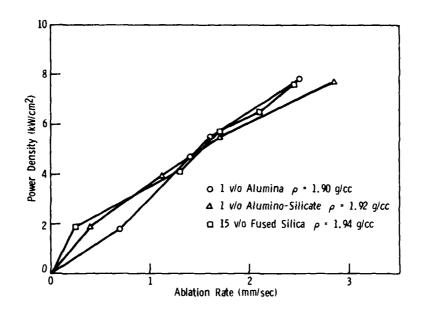


Figure 7. Ablation rate versus power density at Mach 0.8 for three different fused silica composites at similar density levels.

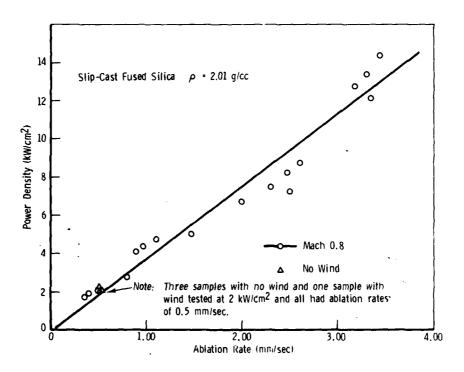


Figure 8. Ablation rate versus laser power density for slip-cast fused silica.

3.3 COMPARISON OF PENETRATION VERSUS ABLATION

In both this test program and the one by Viechnicki et al., a well-defined top hat beam was used. This is one of the major reasons for the lower ablation rates shown in Table I. The penetration experiments used a gaussian beam and the time of penetration was determined when the first pinhole of light emerged through the backside of the sample, the area of the entrance hole in the sample being many hundreds of times that of the exit pinhole. Approximately one-third of the volume of material was removed as would have been removed had the full diameter of the beam burned completely through the sample. Also in the penetration studies the laser beam was much smaller than the sample and because of the low thermal conductivity of SCFS the heat from the beam would be more concentrated and would tend to increase the penetration rates. Using a Mach 0.8 air flow across the sample would seem to help dissipate some of the heat from the beam and reduce the ablation rate. This was not the case, at least at 2 kW/cm power density. Three samples of SCFS were irradiated in the ablation test apparatus without any air flow. An average ablation rate of 0.5 mm/sec was obtained which is identical for the SCFS samples tested with Mach 0.8 wind.

4. CONCLUSIONS

- 1. The failure mechanism for SCFS and all the fiber-reinforced SCFS composites is melt through with approximately 33% of the material in the path of the beam removed by vaporization.
- 2. For all the fiber-reinforced SCFS composites tested, the laser beam melted each material, regardless of fiber type or amount, into a glassy phase in which no fibers were visible.
- 3. At 2 kW/cm 2 SCFS composites containing from 0 to 15 v/o fused silica fibers showed no difference in their penetration rates. A sample containing 25 v/o fibers and having a density of 1.77 g/cc showed a 57% increase in penetration rate.
- 4. Ablation rates for power density levels of from 2 to 8 kW/cm of SCFS composite materials are virtually unaffected by fiber type or amount and are also independent of density.
- 5. At power density levels of from 10 to 18 kW/cm, the ablation rates for fiber-reinforced SCFS were also independent of fiber type and amount but were a function of bulk density, the lower density samples having a higher ablation rate.
- 6. At 2 kW/cm 2 the ablation rate of unreinforced SCFS is approximately 0.5 mm/sec, both with a Mach 0.8 air flow and without.
- 7. In general, it can be concluded that the addition of ceramic fibers to SCFS did not in itself degrade the laser response of any of the materials. However, if a particular fiber-reinforced SCFS composite is to be considered a viable candidate to replace SCFS, it must be fabricated with a density level very similar to that of SCFS in order to give equal thermal response.

DISTRIBUTION LIST

```
No. of
Copies
                                                                                                                                                Copies
  . Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, D.C. 20301
1 ATTN: Mr. J. Persh
1 Dr. G. Gamota
                                                                                                                                                         Naval Research Laboratory, Washington, C.C. 20375
ATTN: Dr. J. M. Krafft - Code 5630
Dr. A. I. Schindler - Code 6000
Dr. F. Patten - Code 6003
Dr. T. Schriempf - Code 6330
 12 Commander, Defense Technical Information Center,
Cameron Station, Building 5, 5010 Duke Street,
Alexandria, Virginia 22314
                                                                                                                                                                        Dr. L. Towle - Code 6330
Dr. F. Milton - Code 6550
                                                                                                                                                                        Mr. R. Rice
Or. Jim c. I. chang
   I National Technical Information Service, 5285 Port Royal Road,
                                                                                                                                                          Commander, Naval Air Systems Command, Washington, U.C. 20360
ATTN: Mr. D. Atkinson - Code Alf-5184J, JTCG/AS
MAJ R. Horton - Code Alf-5184J, JTCG/AS
          Springfield, Virginia 22161
         Director, Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209
                                                                                                                                                         Headquarters, Naval Materials Command, Crystal Plaza *5,
Jefferson Davis Highway, Arlington, Virginia 20360
ATTN: Commander T. Hinton - Code OBT235, Room 802
Dr. H. Moore - Code OBT232, Room 802
Mr. O. J. Remson - Code OBT232, Room 802
Mr. W. Greenert - Code OBT234, Room 1018
         ATTN: Dr. A. Bement
Dr. Van Reuth
MAJ Harry Winsor
LT COL M. O'Neil
         Battelle Columbus Laboratories, Metals and Ceramics
Information Center, 505 King Avenue, Columbus, Ohio 43201
ATTN: Mr. Winston Duckworth
Dr. D. Niesz
Dr. R. Wills
                                                                                                                                                    Commander, Naval Sea Systems Command, Washington, D.C. 20362
1 ATTN: Mr. M. Kinna, NAVSEA-0352
                                                                                                                                                         Headquarters, Naval Electronics Systems Lommand, Washington, D.C. 20360
ATTN: Code 504
        Deputy Chief of Staff, Research, Development, and Acquisition, Headquarters, Department of the Army, Washington, D.C. 20310 ATTN: DAMA-ARZ
                                                                                                                                                         Commander, Naval Weapons Center, China Lake,
California 93555
ATTN: Mr. F. Markarian
Mr. E. Teppo
Mr. M. Ritchie
                       DAMA-CSS, Dr. J. Bryant
DAMA-PPP, Mr. R. Vawter
         Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709
ATTN: Information Processing Office
Dr. G. Mayer
                                                                                                                                                         Commander, U.S. Air Force of Scientific Research, Building 410, Bolling Air Force Base, Washington, D.C. 20332 ATTN: MAJ W. Simmons
                       Dr. J. Hurt
         Commander, U.S. Army Materiel Development and Readiness
Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333
                                                                                                                                                          Commander, U.S. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433
ATTN: Dr. N. Tallan
         ATTN: DRCDMD-ST
                                                                                                                                                                       Dr. H. Graham
Dr. R. Ruh
   Commander, U.S. Army Electronics Research and Development
Command, Fort Monmouth, New Jersey 07703
1 ATTN: DELSD-L
                                                                                                                                                                        Mr. K. S. Mazdiyasni
Aero Propulsion Labs, Mr. R. Marsh
        Commander, U.S. Army Night Vision Electro-Optics Laboratory,
Fort Belvoir, Virginia 22060
ATTN: DELNV-S, Mr. P. Travesky
DELNV-L-D, Dr. R. Buser
                                                                                                                                                    Commander, Air Force Weapons Laboratory, Kirtland Air Force
Base, Albuquerque, New Mexico 87115
1 ATIN: Dr. R. Rudder
                                                                                                                                                          National Aeronautics and Space Administration,
         Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783
ATTN: Dr. C. Willett
                                                                                                                                                         Mashington, D.C. 20546
ATTN: Mr. G. C. Deutsch - Code RW
Mr. J. Gangler
AFSS-AD, Office of Scientific and Technical Information
         Commander, U.S. Army Missile Command, Redstone Arsenal,
Alabama 35809
ATTN: Mr. P. Ormsby
                                                                                                                                                         National Aeronautics and Space Administration, Lewis Research
Center, 21000 Brookpark Road, Cleveland, Ohio 44135
ATTN: J. Accurio, USAMRDL
Dr. H. B. Probst, MS 49-1
Dr. R. Ashbrook
Dr. S. Dutta
Mr. C. Blankenship
                       DRSMI-TB, Redstone Scientific Information Center
DRSMI-TB, Redstone Scientific Information Center
DRSMI-RH, Dr. Honeycutt
DRCPM-HEL-7, Mr. R. Mitchell
                                                                                                                                                                        Mr. C. Blankenship
         Commander, U.S. Army Aviation Research and Development Command, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120 ATTN: DRAAV-EXT
                                                                                                                                                    National Aeronautics and Space Administration, Langley
Research Center, Hampton, Virginia 23665
1 ATTN: Mr. J. Buckley, Mail Stop 387
                       DRDAY-OF
                        Technical Library
                                                                                                                                                    Commander, White Sands Missile Range, Electronic Warfare
Laboratory, DMEW, LRADCOM, White Sands, New Mexico 88002
1 ATTN: Mr. Thomas Reader, DRSEL-WLM-ME
         Commander, U.S. Army Natick Research and Development
Command, Natick, Massachusetts 01760
ATIN: Technical Library
                                                                                                                                                         AVCO Corporation, Applied Technology Division, Lowell Industrial Park, Lowell, Massachusetts 01887
ATIN: Dr. I. Vasilos
                       Dr. J. Hanson
         Commander, U.S. Army Satellite Communications Agency,
Fort Monmouth, New Jersey 07703
ATTN: Technical Document Center
                                                                                                                                                           Defence Research Establishment Pacific, FMO, Victoria, B.C.,
                                                                                                                                                    VOS IBO, Canada
1 ATTN: R. D. Barer
   Commander, U.S. Army Foreign Science and Technology Center,
220 7th Street, N.E., Charlottesville, Virginia 22901
I ATTN: Military Tech, Mr. W. Marley
                                                                                                                                                           European Research Office, 223 Old Maryleborne Road, London,
                                                                                                                                                          NW1 - 5th, England
ATTN: Dr. R. Quattrone
LT COL James Kennedy
    Technical Director, Human Engineering Laboratories,
Aberdeen Proving Ground, Maryland 21005
1 ATTN: Technical Reports Office
                                                                                                                                                    Georgia Institute of Technology, EES, Atlanta, Georgia 30332
1 ATTN: Mr. J. D. Walton
          Chief of Naval Research, Arlington, Virginia 22217
         ATTN: Code 471
Dr. A. Diness
Dr. R. Pohanka
Dr. E. Salkovitz, Code 470
                                                                                                                                                            III Research Institute, 10 West 35th Street,
                                                                                                                                                          Chicago, Illinois 60bl6
AITN: Mr. S. Bortz, Director, Ceramics Research
Dr. D. Larsen
```

No. of Copies To Copies To

.

-

.

Acres Carles Constitution

High-energy lasers Ceramic composites Technical Report AMMRC TR 81-8, February 1981, 10 pp -illus-table, D/A Project 1L162105AH84, AMCMS Code 612105, H840011

Recently developed ceramic composite materials have been subjected to various CW high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, aluminonisticate and alumina fibers to silicast fused silica (SCTS) resulted in a moderate increase in flexural strength and elastic modulus but had no effect on the ablation rate. Under CW laser irradiation at 10.6 um and an intensity of Z kW/cm², the fiber-reinforced fused silica samples failed by meltthrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite materials were independent of fiber type and amount up forced fused silica was found to be equal to 0.5 mm/sec at 2 kW/cm² with or without a Mach 3.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degree the made at a density level equivalent to that for SCFS, its penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

UNCLASSIFIED UNLIMITED DISTRIBUTION Fused silica AD. Watertown, Massachusetts 02172
EFFECTS OF CH HIGH INTENSITY LASER IRRADIATION
CERAMIC COMPOSITE RADOME MATERIALS frederick P. Meyer, Robert Fitzpatrick, and Army Materials and Mechanics Research Center, Russell E. Whitcher

Jechnical Report AMMRC TR 81-8, February 1981, 10 pp illus-table, D/A Project 1L1621054H84, AMCMS Code 612105.H840011

High-energy lasers Ceramic composites

Key Words

Recently developed ceramic composite materials have been subjected to various CW high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, aluminosilicate and alumina fibers to slip-cast fused silica (SCTS) resulted in a moderate increase in flexural strength and elastic modulus but had no effect on the ablation rate. Where CM laser irradiation at 10.6 um and an intensity of 2 kM/cm², the fiber-reinforced fused silica samples failed by meltthrough with their penetration hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite materials were independent of fiber type and amount up to 8 kW/cm² and were density-dependent above 8 kM/cm². The ablation rate of unreinforced fused silica was found to be equal to 0.5 mm/sec at 2 kM/cm² with or without a Mech 0.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, is penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

AD	UNCLASSIFIED	West Horde	Fused silica	High-energy lasers	Ceramic composites	
Army Materials and Mechanics Research Center,	Watertown, Massachusetts 02172 EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION	ON CERAMIC COMPOSITE RADOME MATERIALS .	Russell E. Whitcher	Technical Report AMMRC TR 81-8, February 1981, 10 pp -	illus-table, D/A Project 1L162105AH84,	

Recently developed ceramic composite materials have been subjected to various CW high intens; y irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-silicate and alumina fibers to silicate fused silica (SCFS) resulted in a moderate increase in flavural strength and elastic modulus but had no effect on the ablation rate. Under CW laser irradiation at 10.6 .m. and an intensity of 2 kW/cm², the riber-reinforced fused silica samples failed by melithrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite naterials were independent of fiber type and amount up forced fused silica was found to be evual to 0.5 mm/sec at 2 kW/cm² with or without a Mach O.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, its penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

AD	UNCLASSIFIED UNLIMITED DISTRIBUTION	•	10 pp - High-energy lasers	Series Composition
Army Materials and Mechanics Research Center,	Matercown, Massachusetts 021/2 EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAMIC COMPOSITE RADOME MATERIALS -	Frederick P. Meyer, Robert Fitzpatrick, and Russell E. Whitcher	fechnical Report AMMRC TR 81-8, February 1981, 10 pp	AMCMS Code 612105.H840011

Recently developed ceramic composite materials have been subjected to various CW high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-silicate and alumina fibers to silicate and silicate and silicate and alumina fibers to silicate and silicate and silicate and silicate and silica samples failed by melthrough with their penetration rate. Under CM laser irradiation at 10.6 um and an intensity of 2 kW/cm², the fiber-reinforced fused silica samples failed by melthrough with their penetration rates of these compositematerials were independent of fibers completely dissolved. Ablation rates of these composite materials were independent of fiber type and amount up forced fused silica was found to be equal to 0.5 mm/sec at 2 kW/cm² with or without a Mach 0.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, its penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

Watertown, Massachusetts 02172 EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAMIC COMPOSITE RADONE MATERIALS -Frederick P. Neyer, Robert Fitzpatrick, and Russell E. Whitcher Materials and Mechanics Research Center,

UNLIMITED DISTRIBUTION

UNCLASSIF 1ED Key Words

8

lasers

Fused silica

High-energy

Ceramic composites

fechnical Report AMMSC TR 81-8, February 1981, 10
illus-table, D/A Project 1L162105AH84,
AMCMS Code 612105.H840011

Recently developed ceramic composite materials have been subjected to various CW high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino silicate and alumina fibers to silicate fused silica (SCFS) resulted in a moderate silicate and alumina fibers to silicate silica is alumino rate. Under CW laser irradiation at 10.6 µm and an intensity of 2 kW/cm², the fiber-reinforced fused silica samples failed by melithrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite naterials were independent of fiber type and amount up forced fused silica was found to be equal to 0.5 mm/sec at 2 kW/cm² with or without a Macn 0.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, its penetation are and the made at a density level equivalent to that for SCFS, its penetation are sample. ablation resistance.

Watertown, Massachusetts 02172 EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION Frederick P. Meyer, Robert Fitzpatrick, and Russell E. Whitcher Materials and Mechanics Research Center, ON CERAMIC COMPOSITE RADONE MATERIALS

UNCLASSIFIED UNLIMITED DISTRIBUTION

Key Words

High-energy lasers Ceramic composites

Fused silica

Technical Report AMMRC 7R 81-8, February 1981, 10 pp illus-table, D/A Project 1L162105AH84, AMCMS Code 612105.H840011

Recently developed ceramic composite materials have been subjected to various CM high intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-silicate and alumina fibers to silicate was fused as ilica (SCFS) resulted in a moderate increase in flexural strength and elastic modulus but had no effect on the ablation rate. Under CM laser irradiation at 10.6 µm and an intensity of 2 kM/cm², the fiber-einforced fused silica samples failed by melithrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers compietely dissolved. Ablation rates of these composite materials were independent of fiber type and amount up forced fused silica was found to be equal to 0.5 mm/sec at 2 kM/cm² with or without a Mach 0.8 air flow across the sample. The addition of ceramic fibers to SCFS did not degree could not be made at a density level equivalent to that for SCFS, its penetration rate and ablation rate were greater and the materials would offer less ablation resistance.

₽ đ Watertown, Massachusetts 02172 EFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAILC COMPOSITE RADOME MATERIALS -Frederick P. Meyer, Robert Fitzpatrick, and Russell E. Whitcher Materials and Mechanics Research Center, Army

Technical Report AMMRC TR 81-8, February 1981, 10 i i11us-table, D/A Project 1L162105AH84, AMCMS Code 612105.H840011

Recently developed ceramic composite materials have been subjected to various CW high intensity fradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-citicate and alumina fibers to silicate disciplinate silicate and alumina fibers to silicate silical (SCTS) resulted in a moderate increase in flavoral strength and elastic modulus but had no effect on the ablation rate. Under CW laser irradiation at 10.6 µm and an intensity of 2 kW/cm², the fiber-reinforced fused silica samples failed by melithrough with their penetration hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite materials were independent of fiber type and amount ut forced fused silica was found to be equal to 5.5 misses at 2 kW/cm², mith or without a Mach 0.8 air flow across the sample. The addition of ceramic fibers to SCTS did not degrade the laster response of the material to that for SCTS, its penetration rate and ablation rate adeal delation rate were greater and the materials would offer less ablation resistance.

WATERTOWN, MASSACHUSETTS 02172 EFFECTS OF CW HIGH INTENSITY LASER IRRADIATION ON CERAMIC COMPOSITE RADOME MATERIALS rederick P. Meyer, Robert Fitzpatrick, and Materials and Mechanics Research Center, Russell E. Whitcher

Jechnical Report AWMRC TR 81-8, February 1981, 10 pp filus-table, D/A Project 1L162105AH84, AMCMS Code 612105.H840011

Recently developed ceramic composite materials have been subjected to various (Whigh intensity irradiation and their responses were studied as a function of composition and processing parameters. The addition of high-purity silica, alumino-silicate and alumina fibers to silicate silicate and sulumina fibers to silicate silicate on effect on the ablation rate. Under CM laser irradiation at 10.6 um and intensity of 2 kW/cm², the fiber-reinforced fused silica samples failed by melthrough with their penetration rates all being approximately 0.15 to 0.25 cm/sec. The damage area around the laser hole was melted into a glassy phase with the fibers completely dissolved. Ablation rates of these composite materials were independent of fiber type and amount up forced fused silica was found to be equal to 0.5 mm/sec at 2 kW/cm² with or without ordegrade the laser response of the material but when a particular composite sample could not be made at a density level equivalent to that for SCFS, its penetation rate and ablation rate were greater and the materials would offer less ublation resistance.

UNCLASSIFIED UNLIMITED DISTRIBUTION Key Words

High-energy lasers Ceramic composites Fused silica

CA

UNCLASS;FIED UNLIMITED GISTPIBUTION key Words

Fused silica High-energy lasers

Ceramic composites